125 research outputs found

    WIPI1, BAG1 and PEX3 autophagy-related genes are relevant melanoma markers

    Get PDF
    ROS and oxidative stress may promote autophagy; on the other hand, autophagy may help reduce oxidative damages. According to the known interplay of ROS, autophagy, and melanoma onset, we hypothesized that autophagy-related genes (ARGs) may represent useful melanoma biomarkers. We therefore analyzed the gene and protein expression of 222 ARGs in human melanoma samples, from 5 independent expression databases (overall 572 patients). Gene expression was first evaluated in the GEO database. Forty-two genes showed extremely high ability to discriminate melanoma from nevi (63 samples) according to ROC (AUC ≥ 0.85) and Mann-Whitney (p < 0.0001) analyses. The 9 genes never related to melanoma before were then in silico validated in the IST online database. BAG1, CHMP2B, PEX3, and WIPI1 confirmed a strong differential gene expression, in 355 samples. A second-round validation performed on the Human Protein Atlas database showed strong differential protein expression for BAG1, PEX3, and WIPI1 in melanoma vs control samples, according to the image analysis of 80 human histological sections. WIPI1 gene expression also showed a significant prognostic value (p < 0.0001) according to 102 melanoma patients' survival data. We finally addressed in Oncomine database whether WIPI1 overexpression is melanoma-specific. Within more than 20 cancer types, the most relevant WIPI1 expression change (p = 0.00002; fold change = 3.1) was observed in melanoma. Molecular/functional relationships of the investigated molecules with melanoma and their molecular/functional network were analyzed via Chilibot software, STRING analysis, and gene ontology enrichment analysis. We conclude that WIPI1 (AUC = 0.99), BAG1 (AUC = 1), and PEX3 (AUC = 0.93) are relevant novel melanoma markers at both gene and protein levels

    Ion channel expression in human melanoma samples. in silico identification and experimental validation of molecular targets

    Get PDF
    Expression of 328 ion channel genes was investigated, by in silico analysis, in 170 human melanoma samples and controls. Ninety-one members of this gene-family (i.e., about 28%) show a significant (p 0.90 and p 90% in most cases). Such five genes (namely, SCNN1A, GJB3, KCNK7, GJB1, KCNN2) are novel potential melanoma markers or molecular targets, never previously related to melanoma. The “druggable genome” analysis was then carried out. Miconazole, an antifungal drug commonly used in clinics, is known to target KCNN2, the best candidate among the five identified genes. Miconazole was then tested in vitro in proliferation assays; it dose-dependently inhibited proliferation up to 90% and potently induced cell-death in A-375 and SKMEL-28 melanoma cells, while it showed no effect in control cells. Moreover, specific silencing of KCNN2 ion channel was achieved by siRNA transfection; under such condition miconazole strongly increases its anti-proliferative effect. In conclusion, the present study identified five ion channels that can potentially serve as sensitive and specific markers in human melanoma specimens and demonstrates that the antifungal drug miconazole, known to target one of the five identified ion channels, exerts strong and specific anti-melanoma effects in vitro

    Tetanus toxin potently stimulates tissue transglutaminase. A possible mechanism of neurotoxicity

    Get PDF
    The observation that tetanus toxin (TT) contains two sequences that show homology to known transglutaminase (TGase) substrate sites suggested that the toxin and TGase might interact. This prediction was confirmed by two pieces of evidence. First, TT potently stimulated the enzymatic activity of TGase. The effect was maximal at physiological (micromolar) concentrations of the endogenous TGase regulators calcium and GTP. Second, TT and TGase displayed marked variations of their intrinsic fluorescence properties when they were coincubated, indicating the occurrence of binding between them. TT-TGase binding and TGase activation occurred at similar concentrations of TT and are probably causally related. The activation of TGase, an enzyme present in nerve endings that, when activated, can irreversibly cross-link cellular proteins, might mediate the neurotoxic action of TT

    Identification of a novel domain of fibroblast growth factor 2 controlling its angiogenic properties.

    Get PDF
    Fibroblast growth factor 2 (FGF-2) is a potent factor modulating the activity of many cell types. Its dimerization and binding to high affinity receptors are considered to be necessary steps to induce FGF receptor phosphorylation and signaling activation. A structural analysis was carried out and a region encompassing residues 48-58 of human FGF-2 was identified, as potentially involved in FGF-2 dimerization. A peptide (FREG-48-58) derived from this region strongly and specifically inhibited FGF-2 induced proliferation and migration of primary bovine aorta endothelial cells (BAEC) in vitro, and markedly reduced FGF-2-dependent angiogenesis in two distinct in vivo assays. To further investigate the role of region 48-58, a polyclonal antibody raised against FREG-(48-58) was tested and was found to block FGF-2 action in vitro. Human FGF-2 has three histidine residues, one falling within the region 48-58. Chemical modification of histidine residues blocked FGF-2 activity and FREG-(48-58) inhibitory effect in vitro, indicating that histidine residues, in particular the one within FREG-(48-58) region, play a crucial role in the observed activity. Additional experiments showed that FREG-(48-58) specifically interacted with FGF-2, impaired FGF-2-interaction with itself, with heparin and with FGF receptor 1, and inhibited FGF-2-induced receptor phosphorylation and FGF-2 internalization. These data indicate for the first time that region 48-58 of FGF-2 is a functional domain controlling FGF-2 activity

    Molecular modelling of co-receptor CD8αα and its complex with MHC class I and T-cell receptor in sea bream (Sparus aurata)

    Get PDF
    T-cells are the main actors of cell-mediated immune defence; they recognize and respond to peptide antigens associated with MHC class I and class II molecules. In this paper, we investigated by molecular modelling methods in the teleost sea bream (Sparus aurata) the interaction among the molecules of the tertiary complex CD8/MHC-I/TCR, which determines the T-cell-mediated immunological response to foreign molecules. First, we predicted the three-dimensional structure of CD8αα dimer and MHC-I, and, successively, we simulated the CD8αα/MHC-I complex. Finally, the 3D structure of the CD8/MHC-I/TCR complex was simulated in order to investigate the possible changes that can influence TCR signalling events.L'articolo è disponibile sul sito dell'editore http://www.sciencedirect.com

    Solving biclustering with a GRASP-like metaheuristic: two case-study on gene expression analysis

    Get PDF
    The explosion of "omics" data over the past few decades has generated an increasing need of efficiently analyzing high-dimensional gene expression data in several different and heterogenous contexts, such as for example in information retrieval, knowledge discovery, and data mining. For this reason, biclustering, or simultaneous clustering of both genes and conditions has generated considerable interest over the past few decades. Unfortunately, the problem of locating the most significant bicluster has been shown to be NP-complete. We have designed and implemented a GRASP-like heuristic algorithm to efficiently find good solutions in reasonable running times, and to overcome the inner intractability of the problem from a computational point of view. Experimental results on two datasets of expression data are promising indicating that this algorithm is able to find significant biclusters, especially from a biological point of view

    Molecular cloning, differential expression and 3D structural analysis of the MHC class-II β chain from sea bass (Dicentrarchus labrax L.)

    Get PDF
    The major histocompatibility complex class I and II molecules (MHC-I and MHC-II) play a pivotal role in vertebrate immune response to antigenic peptides. In this paper we report the cloning and sequencing of the MHC class II b chain from sea bass (Dicentrarchus labrax L.). The six obtained cDNA sequences (designated as Dila-DAB) code for 250 amino acids, with a predicted 21 amino acid signal peptide and contain a 28 bp 50-UTR and a 478 bp 30-UTR. A multiple alignment of the predicted translation of the Dila-DAB sequences was assembled together with other fish and mammalian sequences and it showed the conservation of most amino acid residues characteristic of the MHC class II b chain structure. The highest basal Dila-DAB expression was found in gills, followed by gut and thymus, lower mRNA levels were found in spleen, peripheral blood leucocytes (PBL) and liver. Stimulation of head kidney leukocytes with LPS for 4 h showed very little difference in the Dila-DAB expression, but after 24 h the Dila-DAB level decreased to a large extent and the difference was statistically significant. Stimulation of head kidney leukocytes with different concentrations of rIL-1b (ranging from 0 to 100 ng/ml) resulted in a dose-dependent reduction of the Dila-DAB expression. Moreover, two 3D Dila-DAB*0101 homology models were obtained based on crystallographic mouse MHC-II structures complexed with D10 T-cell antigen receptor or human CD4; features and differences between the models were evaluated and discussed. Taken together these results are of interest as MHC-II structure and function, molecular polymorphism and differential gene expression are in correlation with disease resistance to virus and bacteria in teleost fish.L'articolo è disponibile sul sito dell'editore http://www.sciencedirect.com/This work was supported by the European Commission within the project IMAQUANIM (EC contract number FOOD-CT-2005-007103)

    Changes in cerebrospinal fluid balance of TNF and TNF receptors in naĂŻve multiple sclerosis patients: early involvement in compartmentalised intrathecal inflammation

    Get PDF
    An imbalance of TNF signalling in the inflammatory milieu generated by meningeal immune cell infiltrates in the subarachnoid space in multiple sclerosis (MS), and its animal model may lead to increased cortical pathology. In order to explore whether this feature may be present from the early stages of MS and may be associated with the clinical outcome, the protein levels of TNF, sTNF-R1 and sTNF-R2 were assayed in CSF collected from 122 treatment-naive MS patients and 36 subjects with other neurological conditions at diagnosis. Potential correlations with other CSF cytokines/chemokines and with clinical and imaging parameters at diagnosis (T0) and after 2 years of follow-up (T24) were evaluated. Significantly increased levels of TNF (fold change: 7.739; p &lt; 0.001), sTNF-R1 (fold change: 1.693; p &lt; 0.001) and sTNF-R2 (fold change: 2.189; p &lt; 0.001) were detected in CSF of MS patients compared to the control group at T0. Increased TNF levels in CSF were significantly (p &lt; 0.01) associated with increased EDSS change (r = 0.43), relapses (r = 0.48) and the appearance of white matter lesions (r = 0.49). CSF levels of TNFR1 were associated with cortical lesion volume (r = 0.41) at T0, as well as with new cortical lesions (r = 0.56), whilst no correlation could be found between TNFR2 levels in CSF and clinical or MRI features. Combined correlation and pathway analysis (ingenuity) of the CSF protein pattern associated with TNF expression (encompassing elevated levels of BAFF, IFN-gamma, IL-1 beta, IL-10, IL-8, IL-16, CCL21, haptoglobin and fibrinogen) showed a particular relationship to the interaction between innate and adaptive immune response. The CSF sTNF-R1-associated pattern (encompassing high levels of CXCL13, TWEAK, LIGHT, IL-35, osteopontin, pentraxin-3, sCD163 and chitinase-3-L1) was mainly related to altered T cell and B cell signalling. Finally, the CSF TNFR2-associated pattern (encompassing high CSF levels of IFN-beta, IFN-lambda 2, sIL-6R alpha) was linked to Th cell differentiation and regulatory cytokine signalling. In conclusion, dysregulation of TNF and TNF-R1/2 pathways associates with specific clinical/MRI profiles and can be identified at a very early stage in MS patients, at the time of diagnosis, contributing to the prediction of the disease outcome
    • …
    corecore